
HST on steroids

15 sep 2009
Ard Schrijvers • a.schrijvers@onehippo.com

The HST is very fast without caching

The HST is very fast without caching

Archetype 7.7.4 created site benchmark for the homepage /site/

On my machine (4 proc)

10.000 requests
50 threads

Requests per second: 1565.46 [#/sec] (mean)

The HST is very fast without caching

The HST scales almost linearly UP and OUT

The HST is very fast without caching

But pages can be slow

The HST is very fast without caching

Reasons:

1. Heavy searches
2. Searches with many hits
3. Many searches on a single page
4. Accessing several thousands of JCR Nodes for a page
5. Accessing many JCR Nodes that are not in the Jackrabbit

bundle caches
6. Accessing external services (of course can always better be

avoided)
7. Faceted navigation with large resultsets

The HST is very fast without caching

Archetype homepage compared to gogreen homepage

With targeting/personalization, we
need to run faster

Targeting / Personalization

==

NO mod_cache
NO squid

NO any caching proxy

Howto?

Howto?

<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-web</artifactId>
</dependency>

Howto?

And rewrite ehcache

SimplePageCachingFilter

to

PageCachingValve

Howto?

Add it to the default site pipeline (also usable for REST though)

<property name="processingValves">
 <list>
 <ref bean="contextResolvingValve" />
 <ref bean="localizationValve" />
 <ref bean="securityValve" />
 <ref bean="subjectBasedSessionValve" />
 <ref bean="jcrSessionStatefulConcurrencyValve"/>
 <ref bean="siteMenusResolvingValve" />
 <ref bean="actionValve" />
 <ref bean="pageCachingValve"/>
 <ref bean="resourceServingValve" />
 <ref bean="componentRenderingValve" />
 <ref bean="aggregationValve" />
 </list>
</property>

Howto?

Note that request matching (Host / mount / sitemap) is already
done before pipelines are invoked

PageCachingValve

1. PageCachingValve is blocking : Stampeding herds less
harmful

2. Optional : When page is invalidated, serve stale responses
to all requests for same page until the single request we let
through replaces the stale response

Result

Result

Gogreen homepage

10.000 requests
50 threads

Requests per second: 8921.19 [#/sec] (mean)

And with targeting / personalization?
 <property name="initializationValves">
 <list>
 <ref bean="initializationValve" />
 <ref bean="cmsSecurityValve"/>
 <bean class="com.onehippo.cms7.behavioral.core.container.BehavioralUpdateValve"/>
 </list>
 </property>
 <property name="processingValves">
 <list>
 <ref bean="contextResolvingValve" />
 <ref bean="localizationValve" />
 <ref bean="securityValve" />
 <ref bean="subjectBasedSessionValve" />
 <ref bean="jcrSessionStatefulConcurrencyValve"/>
 <ref bean="siteMenusResolvingValve" />
 <ref bean="actionValve" />
 <ref bean="pageCachingValve"/>
 <ref bean="resourceServingValve" />
 <ref bean="componentRenderingValve" />
 <ref bean="aggregationValve" />
 </list>
 </property>
 <property name="cleanupValves">
 <list>
 <ref bean="cleanupValve" />
 </list>
 </property>

And with targeting / personalization?
During the BehavioralUpdateValve

1. Visitor data is harvested by targeting providers : Very
lightweight

2. For the HST Component tree belonging to request, all
different Persona's are SCORED by targeting engine : very
lightweight

3. The ScorePersona[] array concatenated ==> Part of the
page cache key: very lightweight

C'est tout

What about uncacheable
components?

We could opt for

1. By default HST components are cacheable unless marked
as uncacheable --> entire page becomes uncacheable
when one component is uncacheable

2. Mark sitemap items as cacheable or uncacheable

Open for discussion

Development

Follow https://issues.onehippo.com/browse/HSTTWO-2215

https://issues.onehippo.com/browse/HSTTWO-2215

